SYT-SSX protein, resulted from chromosomal translocation, causes synovial sarcoma, which is a malignant tumor accounting for 10% of soft tissue sarcoma. However, biological functions of SYT (synovial sarcoma translocation), also known as SS18, are largely unclear, whereas it has been proven that Syt-null mice die at early stages of embryonic development. Here, we generated Syt-deficient mice and confirmed the reported phenotypes, including growth retardation, open neural tube and haplo-insufficient lethality, and therefore, there is no doubt that Syt is essential for embryonic development. However, placental defects, described in the earlier report, were rarely seen in our mice and we frequently observed cardiac defect in Syt-deficient mice. As the mechanisms responsible for embryonic lethality seem to be complicate, we performed additional experiments. By using primary cultured embryonic fibroblasts, we showed that Syt(-/-) MEFs deregulate actin organization and suppressed cell migration. These observations suggest that Syt may contribute to the signaling pathway important for various cellular functions in vivo and in vitro, and we propose that Syt-deficient MEFs would be a powerful means to understand the biological roles of SYT in vitro.