In electric-field-responsive soft-matter systems, the suspended particles respond to the Lorentz local field (LLF), yielding abundant important phenomena. Even though the particles can easily rotate, the LLF was conventionally adopted as a quantity that is independent of rotations in the literature. In contrast, here we design an experiment to measure the LLF between two metallic spheres, one of which is rotating, and report a rotation-driven reduction. Excellent agreement between our experiment and theory reveals the role of the relaxation of dipole moments. Its relevance to biophysics, colloidal physics, and nonlinear physics is also discussed.