Sigma-2 receptor ligands potentiate conventional chemotherapies and improve survival in models of pancreatic adenocarcinoma

J Transl Med. 2009 Mar 26:7:24. doi: 10.1186/1479-5876-7-24.

Abstract

Background: We have previously reported that the sigma-2 receptor is highly expressed in pancreas cancer. Furthermore, we have demonstrated that sigma-2 receptor specific ligands induce apoptosis in a dose-dependent fashion. Here, we examined whether sigma-2 receptor ligands potentiate conventional chemotherapies such as gemcitabine and paclitaxel.

Methods: Mouse (Panc-02) and human (CFPAC-1, Panc-1, AsPC-1) pancreas cancer cell lines were used in this study. Apoptosis was determined by FACS or immunohistochemical analysis after TUNEL and Caspase-3 staining. Combination therapy with the sigma-2 ligand SV119 and the conventional chemotherapies gemcitabine and paclitaxel was evaluated in an allogenic animal model of pancreas cancer.

Results: SV119, gemcitabine, and paclitaxel induced apoptosis in a dose-dependent fashion in all pancreas cancer cell lines tested. Combinations demonstrated increases in apoptosis. Mice were treated with SV119 (1 mg/day) which was administered in combination with paclitaxel (300 microg/day) over 7 days to mice with established tumors. A survival benefit was observed with combination therapy (p = 0.0002). Every other day treatment of SV119 (1 mg/day) in combination with weekly treatment of gemcitabine (1.5 mg/week) for 2 weeks also showed a survival benefit (p = 0.046). Animals tolerated the combination therapy and no gross toxicity was noted in serum biochemistry data or on necropsy.

Conclusion: SV119 augments tumoricidal activity of paclitaxel and gemcitabine without major side effects. These results highlight the potential utility of the sigma-2 ligand as an adjuvant treatment in pancreas cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma / drug therapy*
  • Adenocarcinoma / pathology
  • Animals
  • Antineoplastic Combined Chemotherapy Protocols / therapeutic use*
  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Deoxycytidine / analogs & derivatives
  • Deoxycytidine / pharmacology
  • Deoxycytidine / therapeutic use
  • Disease Models, Animal
  • Female
  • Gemcitabine
  • Humans
  • Interphase / drug effects
  • Ligands
  • Mice
  • Mice, Inbred C57BL
  • Paclitaxel / pharmacology
  • Paclitaxel / therapeutic use
  • Pancreatic Neoplasms / drug therapy*
  • Pancreatic Neoplasms / metabolism*
  • Pancreatic Neoplasms / pathology
  • Receptors, sigma / metabolism*
  • Survival Analysis

Substances

  • Ligands
  • Receptors, sigma
  • sigma-2 receptor
  • Deoxycytidine
  • Paclitaxel
  • Gemcitabine