Aedes triseriatus mosquitoes transovarially transmit (TOT) La Crosse virus (LACV) to their offspring with minimal damage to infected ovaries. Ae. triseriatus inhibitor of apoptosis 1 (AtIAP1) is a candidate gene conditioning the ability to vertically transmit LACV. AtIAP1 was amplified and sequenced in adult mosquitoes reared from field-collected eggs. Sequence analysis showed that AtIAP1 has much higher levels of genetic diversity than genes found in other mosquitoes. Despite this large amount of diversity, strong purifying selection of polymorphisms located in the Baculovirus inhibitor of apoptosis repeat (BIR) domains and, to a lesser extent, in the 5' untranslated region seems to indicate that these portions of AtIAP1 are the most important. These results indicate that the 5'UTR plays an important role in transcription and translation and that the BIR domains are important functional domains in the protein. Single nucleotide polymorphisms (SNPs) were compared between LACV-positive and -negative mosquitoes to test for associations between segregating sites and the ability to be transovarially infected with LACV. Initial results indicated that five SNPs were associated with TOT of LACV; however, these results were not replicable with larger sample sizes.