Background: 5-hydroxytryptamine (5 HT, serotonin) is one of the key neuromodulators in mammalian brain, but many fundamental properties of serotonergic neurones and 5 HT release remain unknown. The objective of this study was to generate an adenoviral vector system for selective targeting of serotonergic neurones and apply it to study quantal characteristics of 5 HT release in the rat brain.
Results: We have generated adenoviral vectors which incorporate a 3.6 kb fragment of the rat tryptophan hydroxylase-2 (TPH-2) gene which selectively (97% co-localisation with TPH-2) target raphe serotonergic neurones. In order to enhance the level of expression a two-step transcriptional amplification strategy was employed. This allowed direct visualization of serotonergic neurones by EGFP fluorescence. Using these vectors we have performed initial characterization of EGFP-expressing serotonergic neurones in rat organotypic brain slice cultures. Fluorescent serotonergic neurones were identified and studied using patch clamp and confocal Ca2+ imaging and had features consistent with those previously reported using post-hoc identification approaches. Fine processes of serotonergic neurones could also be visualized in un-fixed tissue and morphometric analysis suggested two putative types of axonal varicosities. We used micro-amperometry to analyse the quantal characteristics of 5 HT release and found that central 5 HT exocytosis occurs predominantly in quanta of approximately 28000 molecules from varicosities and approximately 34000 molecules from cell bodies. In addition, in somata, we observed a minority of large release events discharging on average approximately 800000 molecules.
Conclusion: For the first time quantal release of 5 HT from somato-dendritic compartments and axonal varicosities in mammalian brain has been demonstrated directly and characterised. Release from somato-dendritic and axonal compartments might have different physiological functions. Novel vectors generated in this study open a host of new experimental opportunities and will greatly facilitate further studies of the central serotonergic system.