Glucocorticoid (GC) is known to affect the reproductive system by suppressing the gonadotropin-releasing hormone (GnRH) gene expression in the hypothalamus. However, the mechanism of this effect is poorly understood. We show here that the GC-induced reduction of GnRH mRNA is due to attenuation of a post-transcriptional process i.e. splicing of intron A. Treatment of dexamethasone (DEX), a synthetic GC, lowered GnRH mRNA transcripts and was accompanied by reduced excision of the first intron (intron A) from the GnRH pre-mRNA both in vitro and in vivo. While seeking to identify the splicing factors involved in GC-inhibited GnRH pre-mRNA splicing, we found that DEX down-regulated neuro-oncological ventral antigen-1 (Nova-1) mRNA and protein and that knockdown of Nova-1 reduced intron A excision from GnRH pre-mRNA. Nova-1 overexpression reversed the DEX-induced reduction of intron A excision. Nova-1 appears to promote intron A excision by binding to the distal region of exon 1 of the GnRH pre-mRNA. Taken together, our findings indicate that the intron A excision by Nova-1 is a target of GC for down-regulation of GnRH gene expression, and more importantly, we characterized Nova-1, a brain-enriched splicing regulator responsible for GnRH pre-mRNA splicing.