The Parkinson's disease (PD)-associated gene DJ-1 mediates direct neuroprotection. The up-regulation of DJ-1 in reactive astrocytes also suggests a role in glia. Here we show that DJ-1 regulates proinflammatory responses in mouse astrocyte-rich primary cultures. When treated with a Toll-like receptor 4 agonist, the bacterial endotoxin lipopolysaccharide (LPS), Dj-1-knockout astrocytes generated >10 times more nitric oxide (NO) than littermate controls. Lentiviral reintroduction of DJ-1 restored the NO response to LPS. The enhanced NO production in Dj-1(-/-) astrocytes was mediated by a signaling pathway involving reactive oxygen species leading to specific hyperinduction of type II NO synthase [inducible NO synthase (iNOS)]. These effects coincided with significantly increased phosphorylation of p38 mitogen-activated protein kinase (MAPK), and p38(MAPK) inhibition suppressed NO production and iNOS mRNA and protein induction. Dj-1(-/-) astrocytes also induced the proinflammatory mediators cyclooxygenase-2 and interleukin-6 significantly more strongly, but not nerve growth factor. Finally, primary neuron cultures grown on Dj-1(-/-) astrocytes became apoptotic in response to LPS in an iNOS-dependent manner, directly demonstrating the neurotoxic potential of astrocytic DJ-1 deficiency. These findings identify DJ-1 as a regulator of proinflammatory responses and suggest that loss of DJ-1 contributes to PD pathogenesis by deregulation of astrocytic neuroinflammatory damage.