Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP

J Bacteriol. 2009 May;191(10):3248-55. doi: 10.1128/JB.01815-08. Epub 2009 Feb 27.

Abstract

Escherichia coli mRNA interferases, such as MazF and ChpBK, are sequence-specific endoribonucleases encoded by toxin-antitoxin (TA) systems present in its genome. A MazF homologue in Staphylococcus aureus (MazF(Sa)) has been shown to inhibit cell growth when induced in E. coli. Here, we determined the cleavage site for MazF(Sa) with the use of phage MS2 RNA as a substrate and CspA, an RNA chaperone, which prevents the formation of secondary structures in the RNA substrate. MazF(Sa) specifically cleaves the RNA at a pentad sequence, U downward arrow ACAU. Bioinformatics analysis revealed that this pentad sequence is significantly abundant in several genes, including the sraP gene in the S. aureus N315 strain. This gene encodes a serine-rich protein, which is known to play an important role in adhesion of the pathogen to human tissues and thus in endovascular infection. We demonstrated that the sraP mRNA became extremely unstable in comparison with the ompA mRNA only when MazF(Sa) was induced in E. coli. Further bioinformatics analysis indicated that the pentad sequence is also significantly abundant in the mRNAs for all the pathogenic factors in S. aureus. This observation suggests a possible regulatory relationship between the MazEF(Sa) TA module and the pathogenicity in S. aureus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Base Sequence
  • Binding Sites
  • Computational Biology
  • Escherichia coli / genetics
  • Escherichia coli / growth & development
  • Escherichia coli / metabolism
  • Molecular Sequence Data
  • RNA Stability
  • RNA, Messenger / chemistry*
  • RNA, Messenger / metabolism*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Staphylococcus aureus / genetics
  • Staphylococcus aureus / metabolism*
  • Staphylococcus aureus / pathogenicity

Substances

  • Bacterial Proteins
  • RNA, Messenger