We have examined the effect of incorporating tissue anisotropy in simulated ultrasound images of the heart. In simulation studies, the cardiac muscle (myocardium) is usually modeled as a cloud of uncorrelated point scatterers. Although this approach successfully generates a realistic speckle pattern, it fails to reproduce any effects of image anisotropy seen in real ultrasound images. We hypothesize that some of this effect is caused by the varying orientation of anisotropic myocardial structures relative to the ultrasonic beam and that this can be taken into account in simulations by imposing an angle dependent correlation of the scatterer points. Ultrasound images of a porcine heart were obtained in vitro, and the dominating fiber directions were estimated from the insonification angles that gave rise to the highest backscatter intensities. A cylindrical sample of the myocardium was then modeled as a grid of point scatterers correlated in the principal directions of the muscle fibers, as determined experimentally. Ultrasound images of the model were simulated by using a fast k-space based convolution approach, and the results were compared with the in vitro recordings. The simulated images successfully reproduced the insonification dependent through-wall distribution of backscatter intensities in the myocardial sample, as well as a realistic speckle pattern.