The bottom fermenting yeast Saccharomyces pastorianus is reported to have arisen as a natural hybrid of two yeast strains, S. cerevisiae and S. bayanus. The S. pastorianus genome includes S. cerevisiae-type (Sc-type) genes and orthologous lager-fermenting-yeast specific-type (Lg-type) genes derived from S. cerevisiae and S. bayanus, respectively. To gain insights into the physiological properties of S. pastorianus, we developed an in situ synthesized 60-mer oligonucleotide microarray for gene expression monitoring of these orthologous genes, consisting of approximately 6600 Sc-type genes and 3200 Lg-type genes. A comparison of the transcriptional profile of orthologous genes (e.g. Sc-type and Lg-type genes) in S. cerevisiae or S. bayanus demonstrated the feasibility of performing gene expression studies with this microarray. Genome-wide analysis of S. pastorianus with this microarray could clearly distinguish more than 67% of the expressed orthologous genes. Furthermore, it was shown that the gene expression of particular Lg-type genes differed from that of the orthologous Sc-type genes, suggesting that some Lg-type and Sc-type genes may have different functional roles. We conclude that the oligonucleotide microarray that we constructed is a powerful tool for the monitoring of gene expression of the orthologous genes of S. pastorianus.