A novel method for the simultaneous determination of 1-hydroxypyrene (1-OHP), beta-naphthol (beta-NAP) and 9-hydroxyphenanthrene (9-OHPe) in human urine has been established by using synchronous fluorescence spectrometry. It was based on the fact that synchronous fluorescence spectrometry can resolve the broad-band overlapping of conventional fluorescence spectra, which arise from their similar molecular structures. Only one single scan is needed for quantitative determination of three compounds simultaneously when Deltalambda=15nm is chosen. The signals detected at these three wavelengths, 369.6, 330.0 and 358.0nm, vary linearly when the concentration of 1-OHP, beta-NAP and 9-OHPe is in the range of 2.16x10(-8)-1.50x10(-5)molL(-1), 1.20x10(-7)-1.10x10(-5)molL(-1) and 1.07x10(-7)-3.50x10(-5)molL(-1), respectively. The correlation coefficients for the standard calibration graphs were 0.994, 0.999 and 0.997 (n=7) for 1-OHP, beta-NAP and 9-OHPe, respectively. The limits of detection (LOD) for 1-OHP, beta-NAP and 9-OHPe were 6.47x10(-9)molL(-1), 3.60x10(-8)molL(-1) and 3.02x10(-8)molL(-1)with relative standard deviations (R.S.D.) of 4.70-6.40%, 2.80-4.20%, 3.10-4.90% (n=6), respectively. The method described here had been applied to determine traces of 1-OHP, beta-NAP and 9-OHPe in human urine, and the obtained results were in good agreement with those obtained by the HPLC method. In addition, the interaction modes between beta-cyclodextrin (beta-CD) and 1-OHP, beta-NAP or 9-OHPe, as well as the mechanism of the fluorescence enhancement were also discussed.