IL-2 is a cytokine that is essential for the expansion and survival of activated T cells. Although adoptive transfer of tumor-specific T cells with IL-2 is one of strategies for cancer immunotherapy, it is essential to replace IL-2 that exerts severe side effects in vivo. To solve this problem, we propose to use an antibody/IL-2R chimera, which can transduce a growth signal in response to a cognate antigen. We constructed two chimeras, in which ScFv of anti-fluorescein antibody was tethered to extracellular D2 domain of erythropoietin receptor and transmembrane/cytoplasmic domains of IL-2Rbeta or gamma chain. When the chimeras were co-expressed in IL-3-dependent pro-B cell line Ba/F3 and IL-2-dependent T cell line CTLL-2, gene-modified cells were selectively expanded in the absence of IL-3 and IL-2, respectively, by adding fluorescein-conjugated BSA (BSA-FL) as a cognate antigen. Growth assay revealed that the cells with the chimeras transduced a growth signal in a BSA-FL dose-dependent manner. Furthermore, STAT3, STAT5, ERK1/2 and Akt, which are hallmarks for IL-2R signaling, were all activated by the chimeras in CTLL-2 transfectant. We also demonstrated that the chimeras were functional in murine primary T cells. These results demonstrate that the antibody/IL-2R chimeras could substantially mimic the wild-type IL-2R and could specifically expand gene-modified T cells in the presence of the cognate antigen.