Background: Common genetic variations in toll-like receptor 2 (TLR2), an innate pathogen recognition receptor, may influence the development of atopic diseases. So far, very little is known about the role of rare TLR2 mutations in these diseases.
Objective: We investigated the functional properties of six rare amino acid changes in TLR2 (and one amino acid change in a TLR2 pseudogene) and studied their effect on atopic sensitization and disease.
Methods: We identified rare TLR2 mutations leading to amino acid changes from databases. Functional effects of TLR2 variants were analyzed by NF-kappaB-dependent luciferase reporter assay and interleukin-8 enzyme linked immunosorbent assay in vitro. The frequency of these mutations was determined in a random sample of the general population (n = 368). Association with atopic diseases were studied in a cross sectional German study population (n = 3099).
Results: Three out of six mutations in the TLR2 gene altered receptor activity in vitro. Out of these, only the minor allele of R753Q occurred reasonably frequent in the German population (minor allele frequency 3%). The risk to develop atopy increased by 50% in carriers of the 753Q allele (P = 0.021) and total (P = 0.040) as well as allergen specific serum IgE levels (P = 0.011) were significantly elevated.
Conclusion: The rare but functionally relevant mutation R753Q in TLR2 may significantly affect common conditions such as atopic sensitization in the general population.