Effects of ionophores and antibiotics on in vitro hydrogen sulfide production, dry matter disappearance, and total gas production in cultures with a steam-flaked corn-based substrate with or without added sulfur

J Anim Sci. 2009 May;87(5):1705-13. doi: 10.2527/jas.2008-1549. Epub 2009 Feb 11.

Abstract

Effects of 3 ionophores and 2 antibiotics on in vitro H(2)S production, IVDMD, total gas production, and VFA profile with or without added S were examined. In Exp. 1, ruminal fluid from 2 ruminally cannulated steers fed a steam-flaked corn-based diet (75% concentrate) without ionophore and antibiotics for 28 d before collection was used to inoculate in vitro cultures. Treatments were control (no ionophore or antibiotic), 3 ionophores (lasalocid sodium and monensin sodium at 5 mg/L or laidlomycin propionate at 1.65 mg/L), and 2 antibiotics (chlortetracycline hydrochloride at 5 mg/L and tylosin tartarate at 1.25 mg/L). Cultures also had 0 or 1.75 mg of S/L (from sodium sulfate). No S x ionophore-antibiotic treatment interactions were noted (P > 0.53) for IVDMD, total gas production, and H(2)S production. Hydrogen sulfide (mumol/g of fermentable DM) was increased (P < 0.001), and total gas production tended (P = 0.09) to be increased with additional S; however, IVDMD was not affected by added S (P = 0.90). Production of H(2)S was not affected by ionophores or antibiotics (P > 0.18). On average, IVDMD (P = 0.05) was greater for ionophores than for antibiotics, whereas total gas production was less for ionophores than for control (P < 0.001) and antibiotics (P < 0.001). Molar proportions of acetate (P < 0.01) and acetate:propionate (P < 0.01) were decreased and propionate was increased (P < 0.001) in ionophore treatments when no S was added, but when S was added there were no differences (P > 0.20) in acetate, propionate, or acetate:propionate between ionophores and control (S x treatment interaction, P = 0.03). In Exp. 2, the effects of ionophore-antibiotic combinations with added S were examined using the same procedures as in Exp. 1. Treatments were control, monensin plus tylosin (MT), and lasalocid plus chlortetracycline (LCTC), with concentrations of the ionophores and antibiotics as in Exp. 1. No differences were observed among treatments for H(2)S production (P > 0.55). Treatments MT and LCTC tended (P = 0.06) to increase IVDMD and decreased (P = 0.02) gas production vs. control. Proportion of acetate (P = 0.01) and acetate:propionate (P < 0.01) were decreased and propionate increased (P = 0.01) for both MT and LCTC compared with control. These data suggest that when S is approximately 0.42% of substrate DM, the 3 ionophores and 2 antibiotics we evaluated did not affect production of H(2)S gas in an in vitro rumen culture system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Feed*
  • Animals
  • Anti-Bacterial Agents / pharmacology*
  • Cattle / metabolism*
  • Digestion / drug effects*
  • Gases / metabolism
  • Gastrointestinal Contents / chemistry
  • Hydrogen Sulfide / metabolism*
  • In Vitro Techniques
  • Ionophores / pharmacology*
  • Male
  • Sulfur / metabolism
  • Zea mays / metabolism*

Substances

  • Anti-Bacterial Agents
  • Gases
  • Ionophores
  • Sulfur
  • Hydrogen Sulfide