Smed-Evi/Wntless is required for beta-catenin-dependent and -independent processes during planarian regeneration

Development. 2009 Mar;136(6):905-10. doi: 10.1242/dev.033761. Epub 2009 Feb 11.

Abstract

Planarians can regenerate a whole animal from only a small piece of their body, and have become an important model for stem cell biology. To identify regenerative processes dependent on Wnt growth factors in the planarian Schmidtea mediterranea (Smed), we analyzed RNAi phenotypes of Evi, a transmembrane protein specifically required for the secretion of Wnt ligands. We show that, during regeneration, Smed-evi loss-of-function prevents posterior identity, leading to two-headed planarians that resemble Smed-beta-catenin1 RNAi animals. In addition, we observe regeneration defects of the nervous system that are not found after Smed-beta-catenin1 RNAi. By systematic knockdown of all putative Smed Wnts in regenerating planarians, we identify Smed-WntP-1 and Smed-Wnt11-2 as the putative posterior organizers, and demonstrate that Smed-Wnt5 is a regulator of neuronal organization and growth. Thus, our study provides evidence that planarian Wnts are major regulators of regeneration, and that they signal through beta-catenin-dependent and -independent pathways.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Gene Expression Regulation
  • Neurons / metabolism
  • Regeneration*
  • Turbellaria / genetics
  • Turbellaria / metabolism*
  • Wnt Proteins / genetics
  • Wnt Proteins / metabolism*
  • beta Catenin / genetics
  • beta Catenin / metabolism*

Substances

  • Wnt Proteins
  • beta Catenin