Selected TLR ligands are under evaluation as vaccine adjuvants and are known to activate dendritic cells (DCs) and B cells to affect vaccine-induced Ab responses. However, the relative contribution of the two main human DC subsets, myeloid (MDCs) and plasmacytoid (PDCs), in supporting B cell responses to TLR ligands remains poorly understood. We found that PDCs but not MDCs markedly enhanced B cell proliferation in response to TLR7/8-L, an imidazoquinoline derivative, and to a lesser extent to TLR9 ligands (CpG ODN classes A, B, and C). PDCs strongly enhanced TLR7/8-L-induced proliferation of both memory and naive B cells but were only able to support memory cells to differentiate to CD27(high) plasmablasts. In response to TLR7/8 stimulation, PDCs mediated the up-regulation of transcription factors B lymphocyte-induced maturation protein 1 and X-box binding protein 1 and enhanced differentiation of B cells into IgM-, IgG-, and IgA-producing cells. Type I IFN produced to high levels by PDCs was the principal mediator of the effects on TLR7/8 stimulation. Although MDCs expressed higher levels of the known B cell growth factors IL-6, IL-10, and B cell-activating factor in response to TLR7/8 stimulation, they were unable to enhance B cell responses in this system. These data help decipher the different roles of PDCs and MDCs for modulating human B cell responses and can contribute to selection of specific TLR ligands as vaccine adjuvants.