Cardiac phosphorus magnetic resonance spectroscopy (MRS) with surface coils promises better quantification at 3 Tesla (T) from improved signal-to-noise ratios and spectral resolution compared with 1.5 T. However, Bloch equation and field analyses at 3T show that for efficient quantitative MRS protocols using small-angle adiabatic (BIR4/BIRP) pulses the excitation-field is limited by radiofrequency (RF) power requirements and power deposition. When BIR4/BIRP pulse duration is increased to reduce power levels, T2-decay can introduce flip-angle dependent errors in the steady-state magnetization, causing errors in saturation corrections for metabolite quantification and in T1s measured by varying the flip-angle. A new dual-repetition-time (2TR) T1 method using frequency-sign-cycled adiabatic-half-passage pulses is introduced to alleviate power requirements, and avoid the problem related to T2 relaxation during the RF pulse. The 2TR method is validated against inversion-recovery in phantoms using a practical transmit/receive coil set designed for phosphorus MRS of the heart at depths of 9-10 cm with 4 kW of pulse power. The T1s of phosphocreatine (PCr) and adenosine triphosphate (gamma-ATP) in the calf-muscle (n=9) at 3 T are 6.8+/-0.3 s and 5.4+/-0.6 s, respectively. For heart (n=10) the values are 5.8+/-0.5 s (PCr) and 3.1+/-0.6 s (gamma-ATP). The 2TR protocol measurements agreed with those obtained by conventional methods to within 10%.