Quantitative cardiac 31P spectroscopy at 3 Tesla using adiabatic pulses

Magn Reson Med. 2009 Apr;61(4):785-95. doi: 10.1002/mrm.21867.

Abstract

Cardiac phosphorus magnetic resonance spectroscopy (MRS) with surface coils promises better quantification at 3 Tesla (T) from improved signal-to-noise ratios and spectral resolution compared with 1.5 T. However, Bloch equation and field analyses at 3T show that for efficient quantitative MRS protocols using small-angle adiabatic (BIR4/BIRP) pulses the excitation-field is limited by radiofrequency (RF) power requirements and power deposition. When BIR4/BIRP pulse duration is increased to reduce power levels, T2-decay can introduce flip-angle dependent errors in the steady-state magnetization, causing errors in saturation corrections for metabolite quantification and in T1s measured by varying the flip-angle. A new dual-repetition-time (2TR) T1 method using frequency-sign-cycled adiabatic-half-passage pulses is introduced to alleviate power requirements, and avoid the problem related to T2 relaxation during the RF pulse. The 2TR method is validated against inversion-recovery in phantoms using a practical transmit/receive coil set designed for phosphorus MRS of the heart at depths of 9-10 cm with 4 kW of pulse power. The T1s of phosphocreatine (PCr) and adenosine triphosphate (gamma-ATP) in the calf-muscle (n=9) at 3 T are 6.8+/-0.3 s and 5.4+/-0.6 s, respectively. For heart (n=10) the values are 5.8+/-0.5 s (PCr) and 3.1+/-0.6 s (gamma-ATP). The 2TR protocol measurements agreed with those obtained by conventional methods to within 10%.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / analysis*
  • Adult
  • Algorithms*
  • Female
  • Humans
  • Magnetic Resonance Spectroscopy / methods*
  • Male
  • Muscle, Skeletal / metabolism*
  • Myocardium / metabolism*
  • Phosphocreatine / analysis*
  • Phosphorus / analysis
  • Signal Processing, Computer-Assisted*

Substances

  • Phosphocreatine
  • Phosphorus
  • Adenosine Triphosphate