Background & aims: Osteotropic drug-delivery systems have been proposed as a means to provide drugs with affinity to bone tissues. Drugs or proteins have been linked chemically to bone-seeking agents, such as bisphosphonates (BPs); alternatively, drug-loaded nanoparticles have been used to target specific tissues, such as tumor areas. In our current research, these approaches were merged by synthesizing a novel bone-seeking polymer conjugate, from which targetable nanoparticles can be produced.
Materials & methods: An amino-BP, alendronate (ALE) was bound covalently to a biodegradable polymer, poly(lactic-co-glycolide) (PLGA), containing a free end carboxylic group. Blood compatibility and cytotoxicity were assessed in vitro.
Results & discussion: By a classical solvent-evaporation method, nanoparticles with a mean size of 200-300 nm were prepared from the conjugate; sterilization was achieved by gamma-irradiation, confirming their potential as injectable drug nanocarriers. Owing to the presence of the BP residue, PLGA-ALE nanoparticles were adsorbed onto hydroxyapatite to a higher extent than pure PLGA nanoparticles. The PLGA-ALE conjugate did not induce either hemolysis or alterations of the plasmatic phase of coagulation, or cytotoxic effects on endothelial cells and trabecular osteoblasts.
Conclusion: The prepared conjugate represents a novel biomaterial that is able to provide nanoparticles, which can be further loaded with drugs, such as anticancer agents, and addressed to osteolytic or other bone diseases.