Arterial spin labelling (ASL) is a magnetic resonance imaging (MRI) technique that can be used to provide a quantitative assessment of cerebral perfusion. Despite the development of a number of theoretical models to facilitate quantitative ASL, some key challenges still remain. The purpose of this study is to develop a novel quantitative ASL method based on a macroscopic model that reduces the number of variables required to describe the physiological processes involved. To this end, a novel Fokker-Planck equation consisting of stochastically varying macroscopic variables was derived from a general Langevin equation. ASL data from the rat brain was acquired using a bolus-tracking ASL protocol where a bolus of labelled spins flowing from an inversion plane in the neck into an imaging plane in the brain can be observed. Bolus durations of 1.5 s, 2.0 s and 3.0 s were used and the solution to the Fokker-Planck equation for the boundary conditions of bolus-tracking ASL was fitted to the experimental data using a least-squares fit. The mean transit time (MTT) and capillary transit time (CTT) were calculated from the first and second moments of the resultant curve respectively and the arterial transit time (ATT) was calculated by subtracting the CTT from the MTT. The average MTT, CTT and ATT values were 1.75 +/- 0.22 s, 1.43 +/- 0.12 s and 0.32 +/- 0.04 s respectively. In conclusion, a new ASL protocol has been developed by combining the theoretical model with ASL experiments. The technique has the unique ability to provide solutions for varying bolus volumes and the generality of the new model is demonstrated by the derivation of additional solutions for the continuous and pulsed ASL (CASL and PASL) techniques.