The peptidyl-prolyl-isomerase Pin1 interacts with phosphorylated proteins, altering their conformation. The retinoic acid receptor RARalpha and the acute-promyelocytic-leukemia-specific counterpart PML-RARalpha directly interact with Pin1. Overexpression of Pin1 inhibits ligand-dependent activation of RARalpha and PML-RARalpha. Inhibition is relieved by Pin1-targeted short interfering RNAs and by pharmacologic inhibition of the catalytic activity of the protein. Mutants of Pin1 catalytically inactive or defective for client-protein-binding activity are incapable of inhibiting ligand-dependent RARalpha transcriptional activity. Functional inhibition of RARalpha and PML-RARalpha by Pin1 correlates with degradation of the nuclear receptors via the proteasome-dependent pathway. In the acute myelogenous leukemia cell lines HL-60 and NB4, Pin1 interacts with RARalpha in a constitutive fashion. Suppression of Pin1 by a specific short hairpin RNA in HL-60 or NB4 cells stabilizes RARalpha and PML-RARalpha, resulting in increased sensitivity to the cytodifferentiating and antiproliferative activities of all-trans retinoic acid. Treatment of the two cell lines and freshly isolated acute myelogenous leukemia blasts (M1 to M4) with ATRA and a pharmacologic inhibitor of Pin1 causes similar effects. Our results add a further layer of complexity to the regulation of nuclear retinoic acid receptors and suggest that Pin1 represents an important target for strategies aimed at increasing the therapeutic index of retinoids.