Embryonic stem (ES) cells have the unique capacity to proliferate extensively and maintain the potential to differentiate into advanced derivatives of all three primary germ layers. ES cell lines can also be generated from human blastocyst embryos and are considered promising donor sources for cell transplantation therapies for diseases such as juvenile diabetes, Parkinson's disease, and heart failure. However, as for organ transplants, tissue rejection remains a significant concern for ES cell transplantation. Another concern is the use of human embryos. One possible means to avoid these issues is by reprogramming the nuclei of differentiated cells to ES cell-like, pluripotent cells. This review discusses the potential of these strategies to generate tailor-made pluripotent stem cells and the role of transcription factors in the reprogramming process.