Understanding why the immune system is depressed during spaceflight is of obvious importance for future human deep-space missions, such as the foreseen missions to Mars. However, little is known about the effects of these flights on humoral immunity. We previously immunized adult Pleurodeles waltl (urodele amphibian) onboard the Mir space station and showed that heavy-chain variable (VH) domains of specific IgM antibodies are encoded by genes belonging to the VHII and VHVI families. We have now determined how these animals use their individual VHII and VHVI genes by screening IgM heavy-chain cDNA libraries and by quantifying IgM heavy-chain transcripts encoded by these genes. Results were compared with those obtained using control animals immunized on Earth under the same conditions as onboard Mir. Our experiments revealed an increase in the expression of IgM heavy-chain mRNAs encoded by the VHII and VHVI.C genes and a strong decrease in the expression of IgM heavy-chain mRNAs encoded by the VHVI.A and VHVI.B genes in spaceflight animals. Consequently, different heavy-chain mRNAs are expressed by spaceflight animals, demonstrating that this environment affects the humoral response. These observations may be due to a change in B-cell selection under spaceflight conditions.