Aims: The recombinant Antarctic Pseudoalteromonas haloplanktis TAC125 (P. haloplanktis TAC/tou) expressing toluene-o-xylene monooxygenase (ToMO) can efficiently convert several aromatic compounds into their corresponding catechols in a broad range of temperature. When the genome of P. haloplanktis TAC125 was analysed in silico, the presence of a DNA sequence coding for a putative laccase-like protein was revealed. It is well known that bacterial laccases are able to oxidize dioxygenated aromatic compounds such as catechols.
Methods and results: We analysed the catabolic features, conferred by recombinant ToMO activity and the endogenous laccase enzymatic activity, of P. haloplanktis TAC/tou engineered strain and its ability to grow on aromatic compounds as sole carbon and energy sources.
Conclusions: Results presented highlight the broad potentiality of P. haloplanktis TAC/tou cells expressing recombinant ToMO in bioremediation and suggest the use of this engineered Antarctic bacterium in the bioremediation of chemically contaminated marine environments and/or cold effluents.
Significance and impact of the study: This paper demonstrates the possibility to confer new and specific degradative capabilities to a bacterium isolated from an unpolluted environment (Antarctic seawater) transforming it into a bacterium able to grow on phenol as sole carbon and energy source.