In the present study we have investigated deleterious mutants in the uroporphyrinogen III synthase (UROIIIS) that are related to the congenital erythropoietic porphyria (CEP). The 25 missense mutants found in CEP patients have been cloned, expressed, and purified. Their enzymatic activities have been measured relative to wild-type UROIIIS activity. All mutants retain measurable activity, consistent with the recessive character of the disease. Most of the mutants with a significant decrease in activity involve residues likely associated in binding. However, other mutants are fully active, indicating that different mechanisms may contribute to enzyme missfunction. UROIIIS is a thermolabile enzyme undergoing irreversible denaturation. The unfolding kinetics of wild-type UROIIIS and the suite of mutants have been monitored by circular dichroism. This analysis allowed the identification of a helical region in the molecule, essential to retain the kinetic stability of the folded conformation. C73R is found in one-third of CEP patients, and Cys73 is part of this helix. The integrated analysis of the enzymatic activity and kinetic stability data is used to gain insight in the relationship between defects in UROIIIS sequence and CEP.