Non-human primates have served as subjects for studies of the cognition-enhancing potential of novel pharmacological agents for over 25 years. Only recently has a greater appreciation of the translational applicability of this model been realized. Though most Old-World monkeys do not appear to acquire an Alzheimer's-like syndrome in old age, their value resides in the brain physiology they have in common with humans. Paradigms like the delayed matching-to-sample task engender behavior that models aspects of working memory that are substrates for the actions of cognition-enhancing drugs. Our studies have provided information relevant to factors that limit the effectiveness of clinical trial design for compounds that potentially improve cognition. For example, cognition-enhancing compounds from different pharmacological classes, when administered to monkeys, can exhibit remarkable pharmacodynamic effects that outlast the presence of the drug in the body. Studies with non-human primates also can provide information regarding dose ranges and individual subject sensitivity experienced in the clinic. Components of working memory are differentially sensitive to drug effects and may be characterized by different dose ranges for certain compounds, even within the same task. Examples are provided that underscore the possible idiosyncrasies of drug action in the pharmacology of cognition--which could be of critical importance in the design of clinical trials.