Inflammatory bowel disease is caused by abnormal inflammatory and immune responses to harmless substances, such as commensal bacteria, in the large bowel. Such responses appear to be suppressed under healthy conditions, although the mechanism of such suppression is currently unclear. The present study aimed to reveal whether the recognition of bacterial surface carbohydrates by the macrophage galactose-type C-type lectin-1, MGL1/CD301a, induces both the production and secretion of interleukin (IL)-10. Dextran sulfate sodium salt (DSS) was orally administrated to mice that lacked MGL1/CD301a (Mgl1(-/-) mice) and their wild-type littermates. Mgl1(-/-) mice showed significantly more severe inflammation than wild-type mice after administration of DSS. MGL1-positive cells in the colonic lamina propria corresponded to macrophage-like cells with F4/80-high, CD11b-positive, and CD11c-intermediate expression. These cells in Mgl1(-/-) mice produced a lower level of IL-10 mRNA compared with wild-type mice after the administration of DSS for 2 days. Recombinant MGL1 was found to bind both Streptococcus sp. and Lactobacillus sp. among commensal bacteria isolated from mesenteric lymph nodes of DSS-treated mice. Heat-killed Streptococcus sp. induced an increase in IL-10 secretion by MGL1-positive colonic lamina propria macrophages, but not the macrophage population from Mgl1(-/-) mice. These results strongly suggest that MGL1/CD301a plays a protective role against colitis by effectively inducing IL-10 production by colonic lamina propria macrophages in response to invading commensal bacteria.