B cell chronic lymphocytic leukemia (B-CLL) is the most common human leukemia. Deregulation of the T cell leukemia/lymphoma 1 (TCL1) oncogene in mouse B cells causes a CD5-positive leukemia similar to aggressive human B-CLLs. To examine the mechanisms by which Tcl1 protein exerts oncogenic activity in B cells, we investigated the effect of Tcl1 expression on NF-kappaB and activator protein 1 (AP-1) activity. We found that Tcl1 physically interacts with c-Jun, JunB, and c-Fos and inhibits AP-1 transcriptional activity. Additionally, Tcl1 activates NF-kappaB by physically interacting with p300/CREB binding protein. We then sequenced the TCL1 gene in 600 B-CLL samples and found 2 heterozygous mutations: T38I and R52H. Importantly, both mutants showed gain of function as AP-1 inhibitors. The results indicate that Tcl1 overexpression causes B-CLL by directly enhancing NF-kappaB activity and inhibiting AP-1.