Background: Inhibition of specific coagulation pathways such as the factor VIIa-tissue factor complex has been shown to attenuate ischemia/reperfusion (I/R) injury, but the cellular mechanisms have not been explored.
Objectives: To determine the cellular mechanisms involved in the working mechanism of active site inhibited factor VIIa (ASIS) in the protection against myocardial I/R injury.
Methods: We investigated the effects of a specific mouse recombinant in a mouse model of myocardial I/R injury. One hour of ischemia was followed by 2, 6 or 24 h of reperfusion. Mouse ASIS or placebo was administered before and after induction of reperfusion.
Results: ASIS administration reduced myocardial I/R injury by more than 40% at three reperfusion times. Multiplex ligation dependent probe amplification (MLPA) analysis showed reduced mRNA expression in the ischemic myocardium of CD14, TLR-4, interleukin-1 (IL-1) receptor-associated kinase (IRAK) and IkappaBalpha upon ASIS administration, indicative of inhibition of toll-like receptor-4 (TLR-4) and subsequent nuclear factor-kappaB (NF-kappaB) mediated cell signaling. Levels of nuclear activated NF-kappaB and proteins influenced by the NF-kappaB pathway including tissue factor (TF) and IL-6 that were increased after I/R, were attenuated upon ASIS administration. After 6 and 24 h of reperfusion, neutrophil infiltration into the area of infarction was decreased upon ASIS administration. There was, however, no evidence of an effect of ASIS on apoptosis (Tunel staining and MLPA analysis).
Conclusions: We conclude that the diminished amount of myocardial I/R injury after ASIS administration is primarily due to attenuated inflammation-related lethal I/R injury, probably mediated through the NF-kappaB mechanism.