Hepatic ischemia-reperfusion (I/R) injury is an important complication of liver surgery and transplantation. Mitochondrial function is central to this injury. To examine alterations in mitochondrial function during I/R, we assessed the mitochondrial proteome in C57Bl/6 mice. Proteomic analysis of liver mitochondria revealed 234 proteins with significantly altered expression after I/R. From these, 13 proteins with the greatest expression differences were identified. One of these proteins, peroxiredoxin-6 (Prdx6), has never before been described in mitochondria. In hepatocytes from sham-operated mice, Prdx6 expression was found exclusively in the cytoplasm. After ischemia or I/R, Prdx6 expression disappeared from the cytoplasm and appeared in the mitochondria, suggesting mitochondrial trafficking. To explore the functional role of Prdx6 in hepatic I/R injury, wild-type and Prdx6-knockout mice were subjected to I/R injury. Prdx6-knockout mice had significantly more hepatocellular injury compared with wild-type mice. Interestingly, the increased injury in Prdx6-knockout mice occurred despite reduced inflammation and was associated with increased mitochondrial generation of H(2)O(2) and dysfunction. The mitochondrial dysfunction appeared to be related to complex I of the electron transport chain. These data suggest that hepatocyte Prdx6 traffics to the mitochondria during I/R to limit mitochondrial dysfunction as a protective mechanism against hepatocellular injury.