Dendritic cell maturation is the process by which immature dendritic cells differentiate into fully competent antigen-presenting cells that initiate T cell responses. Although some mechanistic aspects of DC maturation have begun to be characterised, very little is known about the genetic events regulating the ubiquitin-proteasome system which plays a key role at various levels of the immune response. Therefore, we here investigated the expression of more than 1000 genes related to the ubiquitin-proteasome system in maturing dendritic cells following various stimuli and identified a specific set of transcripts induced by lipopolysaccharide and/or Poly(I:C) which is largely distinct from that induced by CD40 ligand or pro-inflammatory cytokines. This group of genes was dependent on a type I interferon autocrine loop and included E1 and E2 enzymes, E3-ligases, de-ubiquitylating enzymes, proteasome components as well as the ubiquitin-like modifiers ISG15 and FAT10. We further demonstrate that the increased expression of the E2 enzyme UBE2L6 (UbcH8) is required for efficient antigen cross-presentation by dendritic cells. In summary, our data underline the importance of remodelling the ubiquitin-proteasome system for dendritic cell function.