Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. Systemic treatments for HCC have been largely unsuccessful. OSU-03012 is a derivative of celecoxib with anticancer activity. The mechanism of action is presumably 3-phosphoinositide-dependent kinase 1 (PDK1) inhibition. This study investigated the potential of OSU-03012 as a treatment for HCC. OSU-03012 inhibited cell growth of Huh7, Hep3B, and HepG2 cells with IC(50) below 1 mumol/L. In Huh7 cells, OSU-03012 did not suppress PDK1 or AKT activity. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay and flow cytometry analysis indicated that OSU-03012 did not induce cellular apoptosis. Instead, morphologic studies by light and electron microscopy, as well as special biological staining with monodansylcadaverine, acridine orange, and microtubule-associated protein 1 light chain 3, revealed OSU-03012-induced autophagy of Huh7 cells. This OSU-03012-induced autophagy was inhibited by 3-methyladenine. Moreover, reactive oxygen species (ROS) accumulation was detected after OSU-03012 treatment. Blocking ROS accumulation with ROS scavengers inhibited autophagy formation, indicating that ROS accumulation and subsequent autophagy formation might be a major mechanism of action of OSU-03012. Daily oral treatment of BALB/c nude mice with OSU-03012 suppressed the growth of Huh7 tumor xenografts. Electron microscopic observation indicated that OSU-03012 induced autophagy in vivo. Together, our results show that OSU-03012 induces autophagic cell death but not apoptosis in HCC and that the autophagy-inducing activity is at least partially related to ROS accumulation.