Background: Combined intracoronary and intramyocardial administration might improve outcomes for bone-marrow-derived stem cell therapy for acute myocardial infarction (AMI). We compared the safety and feasibility of early and late delivery of stem cells with combined therapy approaches.
Methods: Patients with left ventricular ejection fraction less than 45% after AMI were randomly assigned stem cell delivery via intramyocardial injection and intracoronary infusion 3-6 weeks or 3-4 months after AMI. Primary end points were changes in infarct size and left ventricular ejection fraction 3 months after therapy.
Results: A total of 60 patients were treated. The mean changes in infarct size at 3 months were -3.5 +/- 5.1% (95% CI -5.5% to -1.5%, P = 0.001) in the early group and -3.9 +/- 5.6% (95% CI -6.1% to -1.6%, P = 0.002) in the late group, and changes in ejection fraction were 3.5 +/- 5.6% (95% CI 1.3-5.6%, P = 0.003) and 3.4 +/- 7.0% (95% CI 0.7-6.1%, P = 0.017), respectively. At 9-12 months after AMI, ejection fraction remained significantly higher than at baseline in both groups. In the early and late groups, a mean of 200.3 +/- 68.7 x 10(6) and 194.8 +/- 60.4 x 10(6) stem cells, respectively, were delivered to the myocardium, and 1.30 +/- 0.68 x 10(9) and 1.29 +/- 0.41 x 10(9) cells, respectively, were delivered into the artery. A high number of cells was required for significant improvements in the primary end points.
Conclusions: Combined cardiac stem cell delivery induces a moderate but significant improvement in myocardial infarct size and left ventricular function.