Ataxia telangiectasia-mutated-Rad3-related DNA damage checkpoint signaling pathway triggered by hepatitis B virus infection

World J Gastroenterol. 2008 Oct 28;14(40):6163-70. doi: 10.3748/wjg.14.6163.

Abstract

Aim: To explore whether acute cellular DNA damage response is induced upon hepatitis B virus (HBV) infection and the effects of the HBV infection.

Methods: We incubated HL7702 hepatocytes with HBV-positive serum, mimicking a natural HBV infection process. We used immunoblotting to evaluate protein expression levels in HBV-infected cells or in non-infected cells; immunofluorescence to show ATR foci ands Chk1 phosphorylation foci formation; flow cytometry to analyze the cell cycle and apoptosis; ultraviolet (UV) radiation and ionizing radiation (IR)-treated cells to mimic DNA damage; and Trypan blue staining to count the viable cells.

Results: We found that HBV infection induced an increased steady state of ATR protein and increased phosphorylation of multiple downstream targets including Chk1, p53 and H2AX. In contrast to ATR and its target, the phosphorylated form of ATM at Ser-1981 and its downstream substrate Chk2 phosphorylation at Thr-68 did not visibly increase upon infection. However, the level of Mre11 and p21 were reduced beginning at 0.5 h after HBV-positive serum addition. Also, HBV infection led to transient cell cycle arrest in the S and the G2 phases without accompanying increased apoptosis. Research on cell survival changes upon radiation following HBV infection showed that survival of UV-treated host cells was greatly increased by HBV infection, owing to the reduced apoptosis. Meanwhile, survival of IR-treated host cells was reduced by HBV infection.

Conclusion: HBV infection activates ATR DNA damage response to replication stress and abrogates the checkpoint signaling controlled by DNA damage response.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Apoptosis
  • Ataxia Telangiectasia Mutated Proteins
  • Cell Cycle
  • Cell Cycle Proteins / metabolism*
  • Cell Proliferation*
  • Cell Survival
  • Cells, Cultured
  • Checkpoint Kinase 1
  • Checkpoint Kinase 2
  • Cyclin-Dependent Kinase Inhibitor p21 / metabolism
  • DNA Damage*
  • DNA-Binding Proteins / metabolism
  • Hepatitis B virus / pathogenicity*
  • Hepatocytes / enzymology
  • Hepatocytes / pathology
  • Hepatocytes / radiation effects
  • Hepatocytes / virology*
  • Histones / metabolism
  • Humans
  • MRE11 Homologue Protein
  • Male
  • Phosphorylation
  • Protein Kinases / metabolism
  • Protein Serine-Threonine Kinases / metabolism*
  • Signal Transduction* / radiation effects
  • Time Factors
  • Tumor Suppressor Protein p53 / metabolism
  • Tumor Suppressor Proteins / metabolism
  • Ultraviolet Rays

Substances

  • CDKN1A protein, human
  • Cell Cycle Proteins
  • Cyclin-Dependent Kinase Inhibitor p21
  • DNA-Binding Proteins
  • H2AX protein, human
  • Histones
  • MRE11 protein, human
  • TP53 protein, human
  • Tumor Suppressor Protein p53
  • Tumor Suppressor Proteins
  • Protein Kinases
  • Checkpoint Kinase 2
  • ATM protein, human
  • ATR protein, human
  • Ataxia Telangiectasia Mutated Proteins
  • CHEK1 protein, human
  • CHEK2 protein, human
  • Checkpoint Kinase 1
  • Protein Serine-Threonine Kinases
  • MRE11 Homologue Protein