Automatic deformable diffusion tensor registration for fiber population analysis

Med Image Comput Comput Assist Interv. 2008;11(Pt 2):1014-22. doi: 10.1007/978-3-540-85990-1_122.

Abstract

In this work, we propose a novel method for deformable tensor-to-tensor registration of Diffusion Tensor Images. Our registration method models the distances in between the tensors with Geode-sic-Loxodromes and employs a version of Multi-Dimensional Scaling (MDS) algorithm to unfold the manifold described with this metric. Defining the same shape properties as tensors, the vector images obtained through MDS are fed into a multi-step vector-image registration scheme and the resulting deformation fields are used to reorient the tensor fields. Results on brain DTI indicate that the proposed method is very suitable for deformable fiber-to-fiber correspondence and DTI-atlas construction.

MeSH terms

  • Algorithms*
  • Brain / anatomy & histology*
  • Diffusion Magnetic Resonance Imaging / methods*
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Information Storage and Retrieval / methods*
  • Nerve Fibers, Myelinated / ultrastructure*
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Subtraction Technique*