The brain basis of bilinguals' ability to use two languages at the same time has been a hotly debated topic. On the one hand, behavioral research has suggested that bilingual dual language use involves complex and highly principled linguistic processes. On the other hand, brain-imaging research has revealed that bilingual language switching involves neural activations in brain areas dedicated to general executive functions not specific to language processing, such as general task maintenance. Here we address the involvement of language-specific versus cognitive-general brain mechanisms for bilingual language processing. We study a unique population, bimodal bilinguals proficient in signed and spoken languages, and we use an innovative brain-imaging technology, functional Near-Infrared Spectroscopy (fNIRS; Hitachi ETG-4000). Like fMRI, the fNIRS technology measures hemodynamic change, but it is also advanced in permitting movement for unconstrained speech and sign production. Participant groups included (i) hearing ASL-English bilinguals, (ii) ASL monolinguals, and (iii) English monolinguals. Imaging tasks included picture naming in "Monolingual mode" (using one language at a time) and in "Bilingual mode" (using both languages either simultaneously or in rapid alternation). Behavioral results revealed that accuracy was similar among groups and conditions. By contrast, neuroimaging results revealed that bilinguals in Bilingual mode showed greater signal intensity within posterior temporal regions ("Wernicke's area") than in Monolingual mode.
Significance: Bilinguals' ability to use two languages effortlessly and without confusion involves the use of language-specific posterior temporal brain regions. This research with both fNIRS and bimodal bilinguals sheds new light on the extent and variability of brain tissue that underlies language processing, and addresses the tantalizing questions of how language modality, sign and speech, impact language representation in the 7 brain.