The complex doublet potential energy surface for the ion-molecule reaction of HCN(+) with C(2)H(4) is investigated at the B3LYP/6-311G(d,p) and CCSD(T)/6-311++G(3df,2pd) (single-point) levels. The initial association between HCN(+) and C(2)H(4) forms three energy-rich addition intermediates, 1 (HCNCH(2)CH(2)(+)), 2 (HC-cNCH(2)CH(2)(+)), and 3 (N-cCHCH(2)CH(2)(+)), which are predicted to undergo subsequent isomerization and decomposition steps. A total of nine kinds of dissociation products, including P(1) (HCN + C(2)H(4)(+)), P(2) (HCNCHCH(2)(+) + H), P(3) (NCCH(2) + CH(3)(+)), P(4) (CN + C(2)H(5)(+)), P(5) (NCCHCH(2)(+) + H(2)), P(6) (HNCCHCH(2)(+) + H), P(7) (c-CHCCH(2)N(+) + H(2)), P(8) (c-NHCCH(2)C(+) + H(2)), and P(9) (HNCCCH(+) + H(2) + H), are obtained. Among the nine products, P(1) is the most abundant product. P(2) is the second feasible product but is much less competitive than P(1). P(3), P(4), P(5), and P(6) may have the lowest yields observed. Other products, P(7), P(8), and P(9), may become feasible at high temperature. Because the intermediates and transition states involved in the most favorable pathway all lie below the reactant, the HCN(+) + C(2)H(4) reaction is expected to be rapid, which is confirmed by experiment. The present calculation results may provide a useful guide for understanding the mechanism of HCN(+) toward other unsaturated hydrocarbons.