Laser-assisted plasma spectrometry is a palette of analytical techniques (L-OES, LA-ICP-MS) capable of fast spatially-resolved elemental analysis in the micrometer range. For fast estimation of the occurrence in steel samples of non-metallic inclusions, which degrade the material's technical properties, simultaneous OES detection and sequential ICP-MS detection were compared. Histograms were obtained for the intensity distribution of the acquired signals (laser pulse statistics). The skewness coefficient of the histograms for Al (indicator of non-metallic inclusions) was found to be clearly dependent on the fraction of non-metallic inclusions in the case of scanning L-OES. For LA-ICP-MS less clear dependence was observed, which was influenced by the acquisition characteristics. In fact, less measurement throughput limited for LA-ICP-MS the counting statistics to an extent that overrides the benefit of higher detection power as compared to L-OES.