Proinflammatory effects caused by oligodeoxynucleotides (ODN) include cytokine production, splenomegaly and infiltration of mononuclear cells into tissues. Presence of one or more CpG motifs in an ODN sequence confers potency for proinflammatory properties. The objective of this research was to characterize the proinflammatory effects produced by CpG containing ODN as compared to non-CpG ODN using gene array analysis. Female CD-1 mice were administered equipotent dose regimens of a CpG ODN (ISIS 12449, 4 mg/kg sc, single or repeat dose for 7 d) or a non-CpG ODN (ISIS 2302, 50 mg/kg sc, q2d for 1 or 3 weeks) and tissues (liver and peripheral blood leukocytes) were harvested for immunohistochemical analysis or gene array analysis. Splenomegaly, a marker of ODN-induced inflammation, was greatest (3-fold above control) with ISIS 12449 when given at multiple doses. Immunohistochemical staining identified mainly monocytes/macrophages as the immune cell infiltrates in the liver following ISIS 12449 or ISIS 2302 treatment. Gene analysis of liver tissue indicated enhanced expression of chemokines (MIG, MIP-2beta, MCP-1, IL-1beta, CCR3), cell surface markers (CD14, CD18, CD86, CD11c, P-selectin), intracellular markers (NF-kappaBp65, MyD88, Survivin) and markers of cell proliferation (PCNA, Ki-67, CD71) was produced with ISIS 12449 or ISIS 2302. Although CpG and non-CpG containing ODN produced similar gene expression profiles, notable differences were observed to suggest that their mechanisms of immune modulation are not completely overlapping. MIG and MIP 1beta were identified as potential biomarker for immune stimulation that may be used to further study the species specificity, sequence/structure dependence and time course of proinflammatory ODN and antisense inhibitors used as therapeutics.