Review. CLC-mediated anion transport in plant cells

Philos Trans R Soc Lond B Biol Sci. 2009 Jan 27;364(1514):195-201. doi: 10.1098/rstb.2008.0128.

Abstract

Plants need nitrate for growth and store the major part of it in the central vacuole of cells from root and shoot tissues. Based on few studies on the two model plants Arabidopsis thaliana and rice, members of the large ChLoride Channel (CLC) family have been proposed to encode anion channels/transporters involved in nitrate homeostasis. Proteins from the Arabidopsis CLC family (AtClC, comprising seven members) are present in various membrane compartments including the vacuolar membrane (AtClCa), Golgi vesicles (AtClCd and AtClCf) or chloroplast membranes (AtClCe). Through a combination of electrophysiological and genetic approaches, AtClCa was shown to function as a 2NO3-/1H+ exchanger that is able to accumulate specifically nitrate into the vacuole, in agreement with the main phenotypic trait of knockout mutant plants that accumulate 50 per cent less nitrate than their wild-type counterparts. The set-up of a functional complementation assay relying on transient expression of AtClCa cDNA in the mutant background opens the way for studies on structure-function relationships of the AtClCa nitrate transporter. Such studies will reveal whether important structural determinants identified in bacterial or mammalian CLCs are also crucial for AtClCa transport activity and regulation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Anions / metabolism*
  • Chloride Channels / metabolism*
  • Plant Cells*
  • Plant Proteins / metabolism
  • Plants / metabolism*

Substances

  • Anions
  • Chloride Channels
  • Plant Proteins