Background: Patient-specific preoperative planning in complex congenital heart disease may be greatly facilitated by virtual cardiotomy. Surgeons can perform an unlimited number of surgical incisions on a virtual 3-D reconstruction to evaluate the feasibility of different surgical strategies.
Objective: To quantitatively evaluate the quality of the underlying imaging data and the accuracy of the corresponding segmentation, and to qualitatively evaluate the feasibility of virtual cardiotomy.
Materials and methods: A whole-heart MRI sequence was applied in 42 children with congenital heart disease (age 3 +/- 3 years, weight 13 +/- 9 kg, heart rate 96 +/- 21 bpm). Image quality was graded 1-4 (diagnostic image quality > or =2) by two independent blinded observers. In patients with diagnostic image quality the segmentation quality was also graded 1-4 (4 no discrepancies, 1 misleading error).
Results: The average image quality score was 2.7 - sufficient for virtual reconstruction in 35 of 38 patients (92%) older than 1 month. Segmentation time was 59 +/- 10 min (average quality score 3.5). Virtual cardiotomy was performed in 19 patients.
Conclusion: Accurate virtual reconstructions of patient-specific cardiac anatomy can be produced in less than 1 h from 3-D MRI. The presented work thus introduces a new, clinically feasible noninvasive technique for improved preoperative planning in complex cases of congenital heart disease.