The LKB1 serine/threonine kinase is a tumour suppressor responsible for the inherited familial cancer disorder Peutz-Jeghers syndrome and is inactivated in a large percentage of human lung cancers. LKB1 acts a master kinase, directly phosphorylating and activating a family of 14 AMPK (AMP-activated protein kinase)-related kinases which control cell metabolism, cell growth and cell polarity. In this issue of the Biochemical Journal, Hardie and colleagues discover an alternative splice form of LKB1 that alters the C-terminus of the protein containing a few known sites of post-translational regulation. Although widely expressed, the short isoform (LKB1(s)) is the sole splice isoform expressed in testes, and its expression peaks at the time of spermatid maturation. Male mice lacking the LKB1(s) isoform have dramatic defects in spermatozoa, resulting in sterility.