Embryonic development and adult tissue homeostasis are controlled through activation of intracellular signal transduction pathways by extracellular growth factors. In the past, signal transduction has largely been regarded as a linear process. However, more recent data from large-scale and high-throughput experiments indicate that there is extensive cross-talk between individual signaling cascades leading to the notion of a signaling network. The behavior of such complex networks cannot be predicted by simple intuitive approaches but requires sophisticated models and computational simulations. The purpose of such models is to generate experimentally testable hypotheses and to find explanations for unexpected experimental results. Here, we discuss the need for, and the future impact of, mathematical models for exploring signal transduction in different biological contexts such as for example development.