Snake venom metalloproteases encompass a large family of toxins, with approximately 200 members already catalogued, which exhibit a diversity of structures and biological functions. From this relatively large number, only a dozen examples of apoptosis-inducing metalloproteases, like VAP1 and 2 from the venom of Crotalus atrox, are known. Since most VAP1-like toxins ever characterized were purified from the venom of Viperidae species inhabiting diverse places on earth, we investigate the expression of VAP-like metalloproteases in the venom gland of three representative pit vipers of the Brazilian territory. By molecular cloning and quantitative real-time polymerase chain reaction, using as calibrator gene the Crotalus durissus terrificus homolog of VAP1, named crotastatin, it is reported here that VAP1/crotastatin-like homologues in the venom gland of Bothrops atrox, C. d. cascavella and Lachesis m. rhombeata are expressed at different levels. Hence, batroxstatins, the crotastatin-like precursors from B. atrox, are expressed 87 times more than crotastatin-1, from C. d. cascavella, and 7.5-fold that lachestatins, from L. m. rhombeata. Moreover, in silico structural analysis of amino acid sequences indicates that batroxstatin-2, crotastatins and lachestatin-1 and -2 which share the archetypal motifs and metal- binding sites of VAP1, are subgrouped in a branch that comprises some apoptosis-inducing toxins.