It is now generally accepted that changes in water permeability in anti-diuretic hormone (ADH)-responsive target epithelial cells result from the insertion in the plasma apical membrane of new components that contain channels for water. The specificity of these channels suggests that they are formed by intrinsic proteins having access to both facies and spanning the whole membrane. We have previously shown that Triton X-100 apical extracts from ADH-stimulated frog urinary bladder contain some proteins inserted under hormonal stimulation. In the present study we have developed polyclonal antibodies using Triton X-100 extract as an immunogen. After considering the inhibitory effect exerted by the whole immune serum on the osmotic water flow, we used different adsorption steps to select, from the immune serum, antibodies to apical membrane proteins inserted in response to the hormone. Immunoblot analysis of these selected antibodies shows that they recognize seven to eight proteins, of which 55-, 35-, 26-, and 17-kDa proteins are always present. Antibodies to these four proteins, affinity purified on nitrocellulose sheets, inhibited ADH-induced osmotic water flow. Altogether these results strongly suggest that proteins of 55, 35, 26, and 17 kDa (or at least one of them) are likely to be involved in the mechanism of water transport.