Background: The etiology of Kawasaki syndrome (KS) remains unknown despite 30 years of intensive search for an agent. Epidemiologic clues to a possible infectious etiology include the seasonal distribution of cases, the previous occurrence of epidemics, the clinical features of the syndrome that mimic other infectious rash/fever illnesses in children, the self-limited nature of the illness, and the peak age incidence in the toddler years.
Methods: We examined the epidemiology and spatial and temporal distribution of KS cases in San Diego County, California during the 6-year period from 1998 to 2003. Clustering in space and time was analyzed using geo-referenced data with the K-function, the local G-statistic, and Knox statistic.
Results: A total of 318 patients were identified through active surveillance. The overall annual incidence was 21.7/100,000 in children <5 years, with rates in whites, white Hispanics, and Asian/Pacific Islanders of 15.3, 20.2, and 45.9/100,000, respectively. The Knox test showed significant clustering of cases within the space-time interval of 3 km and 3-5 days.
Conclusions: This is the first study of KS cases to use geo-referenced point pattern analysis to detect spatial and temporal clustering of KS cases. These data suggest that an infectious agent triggers the immunologic cascade of KS.