Antioxidant defense markers modulated by glutathione S-transferase genetic polymorphism: results of lung cancer case-control study

Genes Nutr. 2007 Dec;2(3):287-94. doi: 10.1007/s12263-007-0057-y. Epub 2007 Oct 16.

Abstract

Oxidative stress and xenobiotic metabolizing enzymes are suspected to be related to carcinogenesis by different cellular mechanisms. Hence, our study aimed at identifying potential relationships between antioxidant defense parameters measured in blood and glutathione S-transferase (GST) genetic polymorphisms of four GST izoenzymes in lung cancer patients and reference individuals. The case-control study included 404 lung cancer patients and 410 non-cancer subjects as controls, matched by age, gender and place of living (central Poland). In control subjects with GSTM3*A/*A, GSTT1 null, GSTM1 null + GSTT1 null, GSTM3*A/*A + GSTT1 null genotype, glutathione peroxidase activity was significantly higher (P < 0.05) than in controls possessing respective potential protective GST genotypes. Controls with GSTM3*A/*A + GSTP1*B genotype presented significantly higher ceruloplasmin activity (P < 0.05) than GSTM3*B + GSTP1*A/*A carriers. Zinc level was significantly higher (P < 0.05) in controls and cases with GSTP1*B + GSTT1 null genotype and in cases with GSTM1 null + GSTP1*B genotype, when compared with respective potential protective GST genotypes. This case-control study indicates that particular defective GST genotypes may enhance the defense against oxidative stress. The potential relationship between the investigated antioxidative enzymes and microelements, and common functional genetic polymorphism of GST was observed mostly in control subjects.