Beclin 1 is an essential mediator of autophagy and a regulator of cell growth and cell death. We examined the effect of Beclin 1 overexpression on the action of estradiol (E(2)) and two antiestrogens, raloxifene and 4-hydroxytamoxifen, in estrogen receptor alpha (ERalpha)-positive MCF-7 breast cancer cells. [(3)H]-thymidine incorporation studies showed that Beclin 1-overexpressing cells (MCF-7 x beclin) had a lower proliferative response to E(2) compared with cells transfected with vector control (MCF-7 x control). There was only a 35% increase in [(3)H]-thymidine incorporation, after 24 hours of E(2) treatment of MCF-7 x beclin cells compared with untreated cells, whereas this increase was 2-fold for MCF-7 x control cells. E(2)-induced changes in the expression of early-response genes were examined by real-time quantitiative PCR. There were significant differences in the pattern of expression of E(2)-induced genes c-myc, c-fos, Erg-1, and Nur77 between MCF-7 x beclin and MCF-7 x control cells two hours after treatment. Although E(2)-induced growth of MCF-7 x control cells was completely inhibited by 500 nmol/L raloxifene or 500 nmol/L 4-hydroxytamoxifen, these concentrations of antiestrogens had no significant effect on the growth of MCF-7 x beclin cells. Confocal microscopic and coimmunoprecipitation studies showed evidence for colocalization and association of Beclin 1 and ERalpha. In addition, E(2) caused a decrease in Akt phosphorylation in MCF-7 x beclin cells, compared with a 3-fold increase in MCF-7 cells, five minutes after treatment. These results indicate that Beclin 1 can down-regulate estrogenic signaling and growth response, and contribute to the development of antiestrogen resistance. This observation might be useful to define and overcome antiestrogen resistance of breast cancer.