Type I interferons (IFNs) activate Janus tyrosine kinase-signal transducer and activator of transcription pathway for exerting pleiotropic biological effects, including antiviral, antiproliferative, and immunomodulatory responses. Here, we demonstrate that filamin B functions as a scaffold that links between activated Rac1 and a c-Jun NH(2)-terminal kinase (JNK) cascade module for mediating type I IFN signaling. Filamin B interacted with Rac1, mitogen-activated protein kinase kinase kinase 1, mitogen-activated protein kinase kinase 4, and JNK. Filamin B markedly enhanced IFNalpha-dependent Rac1 activation and the sequential activation of the JNK cascade members. Complementation assays using M2 melanoma cells revealed that filamin B, but not filamin A, is required for IFNalpha-dependent activation of JNK. Furthermore, filamin B promoted IFNalpha-induced apoptosis, whereas short hairpin RNA-mediated knockdown of filamin B prevented it. These results establish a novel function of filamin B as a molecular scaffold in the JNK signaling pathway for type I IFN-induced apoptosis, thus providing the biological basis for antitumor and antiviral functions of type I IFNs.