High temporal resolution and streak-free four-dimensional cone-beam computed tomography

Phys Med Biol. 2008 Oct 21;53(20):5653-73. doi: 10.1088/0031-9155/53/20/006. Epub 2008 Sep 24.

Abstract

Cone-beam computed tomography (CBCT) has been clinically used to verify patient position and to localize the target of treatment in image-guided radiation therapy (IGRT). However, when the chest and the upper abdomen are scanned, respiratory-induced motion blurring limits the utility of CBCT. In order to mitigate this blurring, respiratory-gated CBCT, i.e. 4D CBCT, was introduced. In 4D CBCT, the cone-beam projection data sets acquired during a gantry rotation are sorted into several respiratory phases. In these gated reconstructions, the number of projections for each respiratory phase is significantly reduced. Consequently, undersampling streaking artifacts are present in the reconstructed images, and the image contrast resolution is also significantly compromised. In this paper, we present a new method to simultaneously achieve both high temporal resolution ( approximately 100 ms) and streaking artifact-free image volumes in 4D CBCT. The enabling technique is a newly proposed image reconstruction method, i.e. prior image constrained compressed sensing (PICCS), which enables accurate image reconstruction using vastly undersampled cone-beam projections and a fully sampled prior image. Using PICCS, a streak-free image can be reconstructed from 10-20 cone-beam projections while the signal-to-noise ratio is determined by a denoising feature of the selected objective function and by the prior image, which is reconstructed using all of the acquired cone-beam projections. This feature of PICCS breaks the connection between the temporal resolution and streaking artifacts' level in 4D CBCT. Numerical simulations and experimental phantom studies have been conducted to validate the method.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Algorithms*
  • Cone-Beam Computed Tomography / instrumentation
  • Cone-Beam Computed Tomography / methods*
  • Humans
  • Imaging, Three-Dimensional / methods*
  • Phantoms, Imaging
  • Radiographic Image Enhancement / methods*
  • Radiographic Image Interpretation, Computer-Assisted / methods*
  • Reproducibility of Results
  • Respiratory Mechanics*
  • Sensitivity and Specificity