Dissection of two Cx37-independent conducted vasodilator mechanisms by deletion of Cx40: electrotonic versus regenerative conduction

Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H2001-7. doi: 10.1152/ajpheart.00063.2008. Epub 2008 Sep 12.

Abstract

Conduction of changes in diameter plays an important role in the coordination of peripheral vascular resistance and, thereby, in the control of arterial blood pressure. It is thought that conduction of vasomotor signals relies on the electrotonic spread of changes in membrane potential from a site of stimulation through gap junctions connecting the cells of the vessel wall. To explore this idea, we stimulated a short segment of mouse cremasteric arterioles with an application, via micropipette, of ACh, an endothelium-dependent vasodilator, or pinacidil, an ATP-sensitive K+ channel opener. Vasodilations were evaluated at the stimulation site (local) and at 500, 1,000, and 2,000 microm upstream. The vasodilator response evoked by direct arteriolar hyperpolarization induced by pinacidil decayed rapidly with distance, as expected for the passive spread of an electrical signal. Deletion of the gap junction proteins connexin37 or connexin40 did not alter the conduction of pinacidil-induced vasodilation. In contrast to pinacidil, the vasodilator response activated by ACh spread along the entire vessel without decrement. Although the ACh-induced conducted vasodilation was similar in wild-type and connexin37 knockout mice, deletion of connexin40 converted the nondecremental conducted response activated by ACh into one similar to that of pinacidil, with a decline in magnitude along the vessel length. These results suggest that ACh activates a mechanism of regenerative conduction of vasodilator responses. Connexin40 is essential for the ACh-activated regenerative vasodilator mechanism. However, neither connexin40 nor connexin37 is indispensable for the electrotonic spread of hyperpolarizing signals.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcholine / pharmacology
  • Animals
  • Arterioles / metabolism
  • Blood Pressure
  • Connexins / deficiency
  • Connexins / genetics
  • Connexins / metabolism*
  • Gap Junction alpha-4 Protein
  • Gap Junction alpha-5 Protein
  • Gap Junctions / metabolism
  • Immunohistochemistry
  • KATP Channels / metabolism
  • Male
  • Membrane Potentials
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Muscle, Smooth / blood supply*
  • Pinacidil / pharmacology
  • Signal Transduction* / drug effects
  • Time Factors
  • Vasodilation* / drug effects
  • Vasodilator Agents / pharmacology

Substances

  • Connexins
  • KATP Channels
  • Vasodilator Agents
  • Pinacidil
  • Acetylcholine